Is the harvest over when the price drops? Deciding to stop when there's still a crop

Lisa K. Johnson, Ph.D. & Rebecca D. Dunning, Ph.D.

Department of Horticultural Science & Center for Environmental Farming Systems

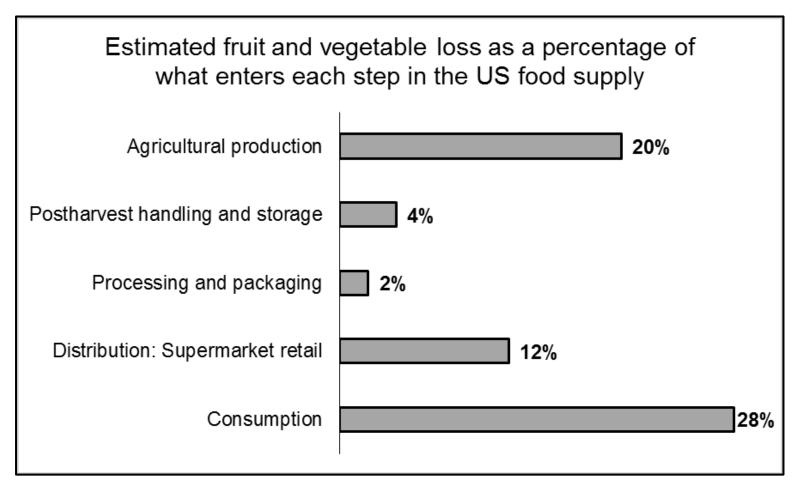
We already know:

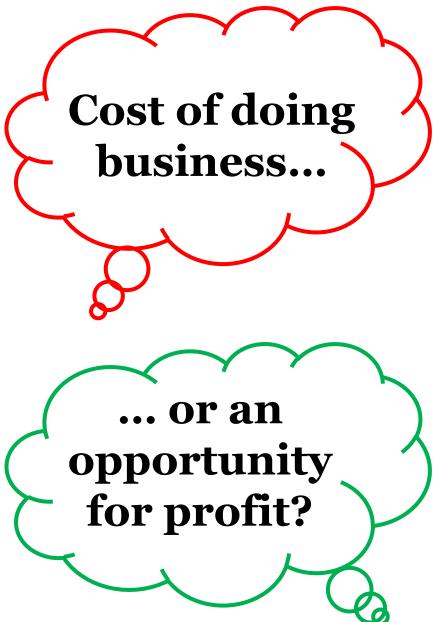
Material	Rate/ Acre	Unit	Cost/ Unit	Cost/ Acre	Cost/	Annual Cost
	7.010					
Fumigant						
Chloroplicrin	150.00	lbs	\$3.25	\$487.50		\$487.50
Total Fumigants						\$487.50
Fertilizers & Nutrients						
10-20-10	750.00	lbs	\$0.17	\$127.50		\$127.50
20-20-20	1.00	lbs	\$0.83	\$0.83		\$0.83
Calcium nitrate (applied daily, monthly rate)	336.96	lbs	\$0.25	\$84.24	3.00	\$252.72
Potassium nitrate (applied daily, monthly rate)	168.48	lbs	\$0.75	\$126.36	3.00	\$379.08
Total Fertilizers & Nutrients						\$760.13
Herbicides						
Paraquat	1.50	pt	\$5.25	\$7.88	2.00	\$15.75
Sencor	0.50	lbs	\$11.80	\$5.90		\$5.90
Poast	1.00	pt	\$9.87	\$9.87		\$9.87
Total Herbicides						\$31.52
Insecticides						
Thrips Spintor	6.00	OZ	\$5.250	\$31.50	3.00	\$94.50
Aphid Dimethoate	0.75	pt	\$5.850	\$4.39		\$4.39
Fruit Worm Asana	6.00	OZ	\$0.71	\$4.26	8.00	\$34.08
Total Insecticides						\$132.97
Fungicides						
Early Blight Quadris	6.00	OZ	\$2.71	\$16.26	4.00	\$65.04
Early Blight Bravo Ultrex	1.50	lbs	\$8.17	\$12.26	4.00	\$49.02
Late Blight Maneb	2.00	lbs	\$7.00	\$14.00	4.00	\$56.00
Late Blight Actiguard	1.00	OZ	\$50.00	\$50.00	6.00	\$300.00
Bacterial Kocide 101	3.00	lbs	\$5.25	\$15.75	8.00	\$126.00
Total Fungicides						\$596.06

Producing a vegetable crop requires several expensive inputs like land, labor, and chemicals.

However...

Project	ed Base Yields	96,646 lbs/acre
Marketa		50,040 IBS/acic
Markot	Percent of Base Yield	80.0%
	Pounds	77,317
	25 lb Boxes	3,093
	Jumbo and XL fruit	33,301
	Large fruit	24,748
	Medium and small fruit	19,078
Culled		
	Percent of Base Yield	20.0%
	Pounds	19,329
Market	Prices \$/25 lb Box	
	Jumbo and XL fruit	\$9.50
	Large fruit	\$8.15
	Medium and small fruit	\$7.00
Culled	Fruit	
n 255 0 57 0 56 0 56 0 56 0 56 0 56 0 56 0	\$/Pound	\$0.00


In order to use inputs efficiently,


it makes sense to market everything that is produced,

rather than just what fits traditional buyer specifications.

Source: Cost of Producing, Harvesting and Marketing Field Grown Tomatoes in the Southeastern United States. (2012) O. Sydorovych, F. Louws, and C. Gunter

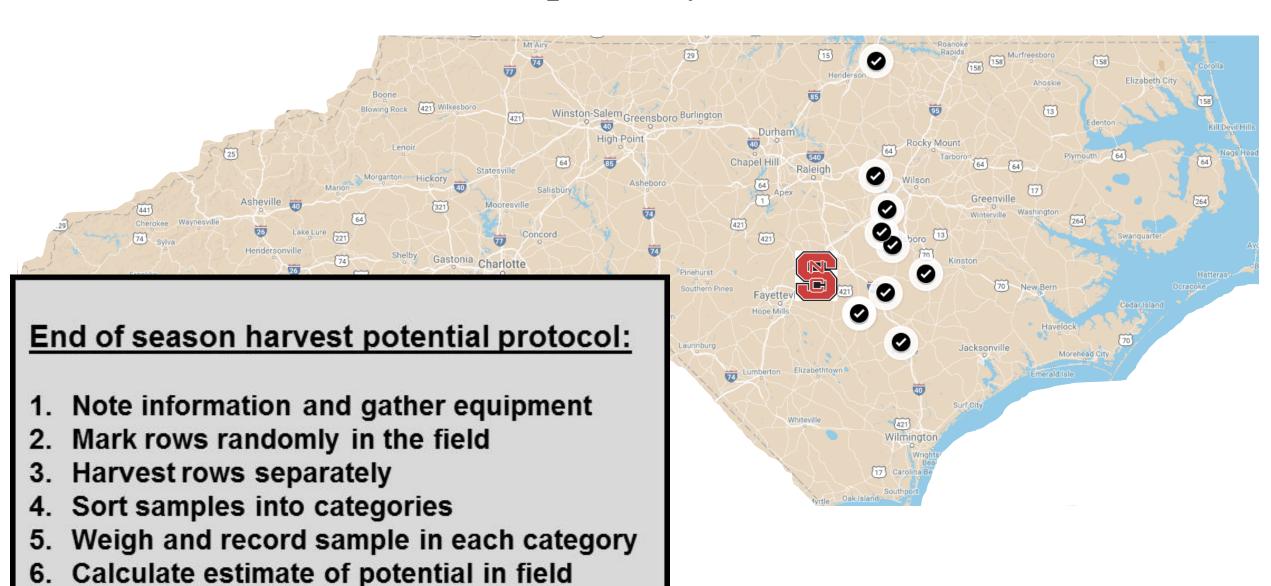
An estimated 20% of the harvested yield of vegetables is unutilized: remaining in the field, or culled in packing.

Source: FAO Food and Agriculture Organization of the United Nations. 2011. Global food losses and food waste – Extent, causes and prevention.

What is left in the field after the harvest is ended?

Meets current buyer specifications for quality, but unharvested due to market constraints.

Off-size, blemished, misshapen, or miscolored but not under or over mature. Nutritious and safe.


Damaged, diseased, decayed or over mature. Not suitable for human consumption

Whole Crop Harvest Objectives:

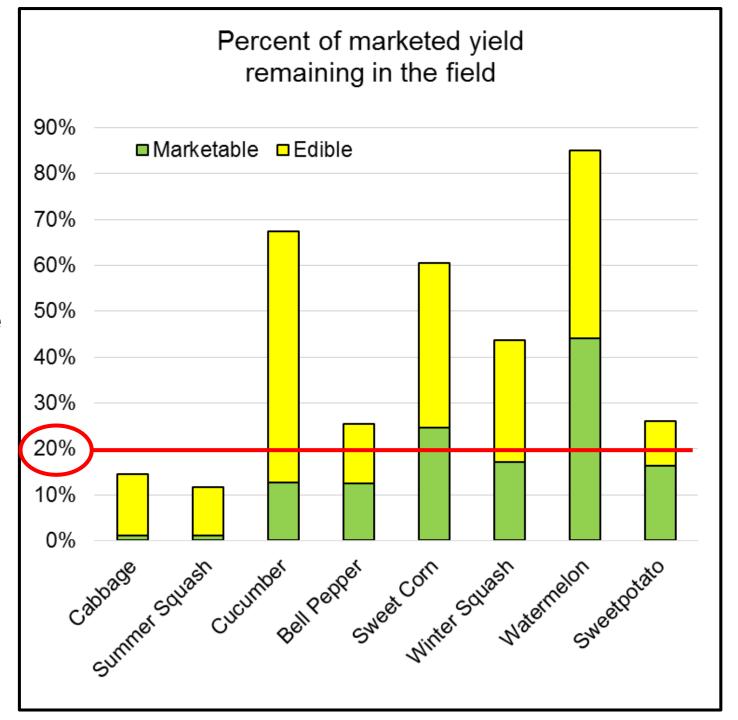
- 1: Understand decision making, explore strategies that reduce food loss that benefit growers
- Create easy-to-utilize protocols and video useful to quickly determine the quantity of edible produce left in the field
- **3:** Measure what's left in growers' fields
- Pilot engineering-based and value-chain strategies

Field Measurement: Growers primarily in eastern North Carolina

Data collection for one crop

7 dates 10 fields 3 farms

lb/ac			
	Marketable	Edible	Inedible
Cabbage	274	3040	3296
Summer Squash	79	777	5438
Cucumber	1684	7249	7135
Bell Pepper	2866	3028	2198
Sweet Corn	1864	2734	3319
Winter Squash	1273	1961	11350
Watermelon	11086	10325	18285
Sweetpotato	3192	1921	326

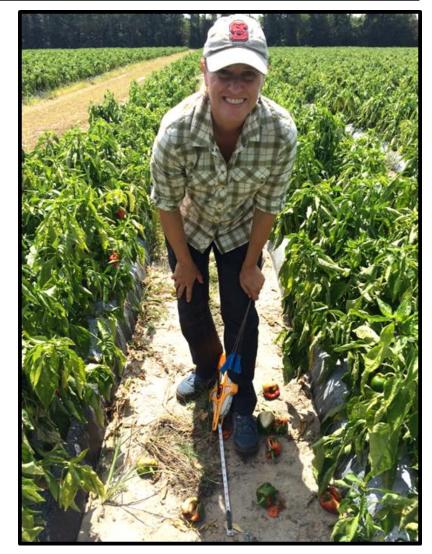


Compared with three year average marketed yields in NC

(USDA-NASS and NCDA & CS, 2016; 2017)

This snapshot study suggests the estimates should be reevaluated.

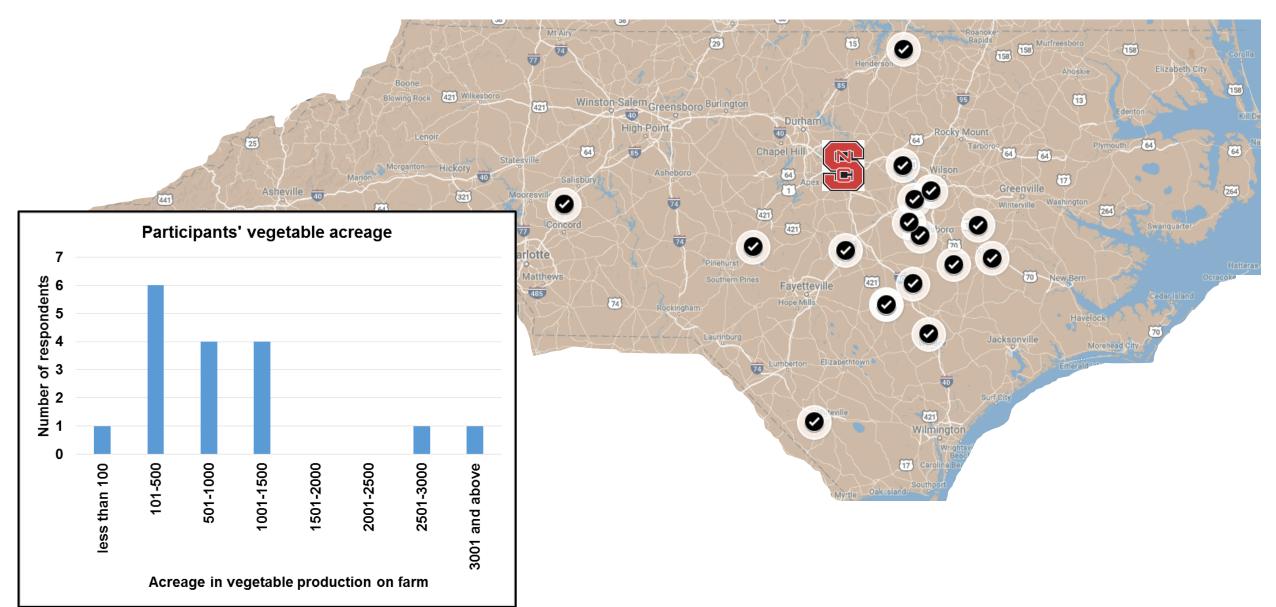
42% grand mean lost in the field.

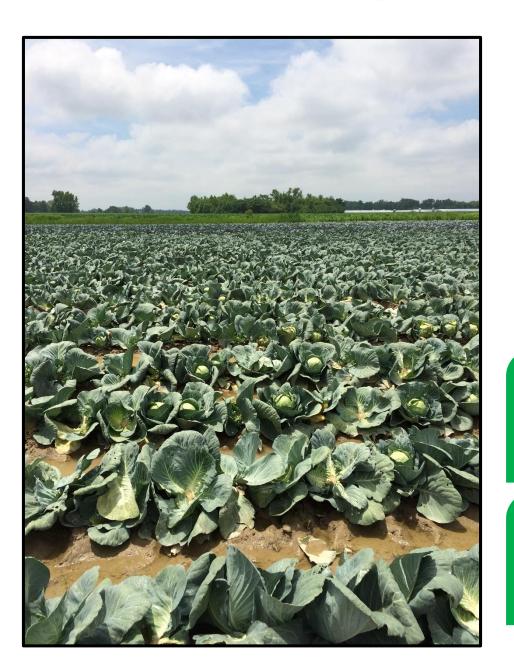


Why measure something with low economic value?

Provides a baseline for reducing losses and knowledge of volumes available.

Measurement is a tool to prevent losses, higher priority than recovery and reuse.

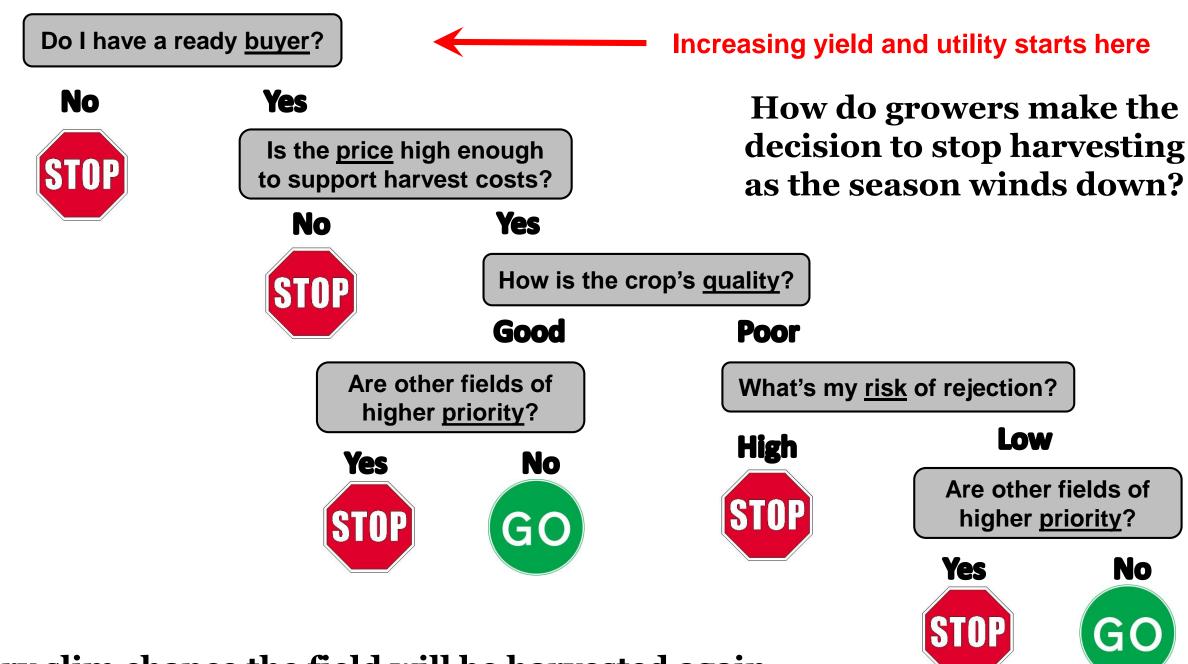

Economic incentive is already here, and more opportunities are on the horizon.


* What gets measured, gets managed! *

Growers' decision-making:

Growers primarily in eastern North Carolina Operate 19.6% of vegetable production acreage

How are field losses perceived?


Low volume or low value

No measurement in field

Majority of growers did not feel comfortable providing an estimate of losses

"if you need a percentage, probably 10%, something like that. 15% maybe. And there again, it's just a lot of what's going on in the marketplace. It's hard to figure."

"We know you leave a lot of potatoes in the field. At what percent? If I told you a number, it would just be something I'm pulling out of the air."

Very slim chance the field will be harvested again

Possible alternative destinations:

Buyer:	Processors	Retail and Subscription	Foodservice Distributors	Fresh Cut Operation	Food Bank
Truckloads and pallet quantities, boxed	WTRMLN WTR	Robinson Fresh Wegman's Lowes ECO Whole Foods Hungry Harvest Imperfect Produce	PRO*ACT Foster Caviness FreshPoint	Ford's Produce	Farm to Food Bank
Bulk Bins	CIFI Seal the Seasons	Hungry Harvest Imperfect Produce		Ford's Produce	Farm to Food Bank
Single Boxes	Seal the Seasons	Ungraded Hungry Harvest	Foster Caviness FreshPoint	Working Landscapes	Food Banks & local pantries

Connect

increase marketed yield

potentially increase profit

Growers' solutions to reduce losses:

Most Facilitate market consistency and high prices preferable option Improve infrastructure for processing Increase produce demand Incentivize and facilitate donation **Support alternative** marketing strategies **Modify consumer** expectations **Feed** animals

Least

preferable

option

Land

appli-

cation

- Solutions often promoted for growers:
- Reducing overproduction
- Facilitating donation through infrastructure & policy changes
- Supporting alternative markets

(ReFED, 2016; Gunders, 2012; EPA, 2015)

How to Determine the Potential to Increase Vegetable Yield through Estimating and Reducing Field Losses

Vegetable grow increase quality they can optimi and disease ma improved variet is to reduce fiel significant porti

In North Carolina are left unharves to increase yield Another way to i range of product accept a wider ra "ugly" produce. in response to m could be markete buyers. When crithe field, it result potential yield, busince significant in their productio

When Losses Managed

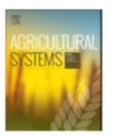
The focus of this technique for me

Full length arti

Estimating case study

Lisa K. Johns Nancy G. Cre

ARTICLEIN


Keywords: Food loss Food waste Primary production Postharvest loss Vegetable crops Gleaning Resources, Conservation & Recycling 137 (2018) 243-250

Agricultural Systems 167 (2018) 136-142

Contents lists available at ScienceDirect

Agricultural Systems

journal homepage: www.elsevier.com/locate/agsy

Field measurement in vegetable crops indicates need for reevaluation of onfarm food loss estimates in North America

Lisa K. Johnson^a,*, Rebecca D. Dunning^a, Chris C. Gunter^a, J. Dara Bloom^b, Michael D. Boyette^c, Nancy G. Creamer^a

ARTICLE INFO

Keywords: Food loss Food waste Primary production

ABSTRACT

Food loss and waste in the US has been estimated at 40%, a figure that does not include losses at the agricultural level. Consumer food waste is expensive and environmentally damaging as it travels the length of the supply chain and largely ends up in the landfill. Most research and campaigns emphasize the consumer level, which has resulted in the omission of data collection and development of solutions for producers of fruit and vegetable

a Department of Hortica

^b Department of Agricu

^c Department of Biologi

a Department of Horticultural Science, North Carolina State University, United States

^b Department of Agricultural and Human Sciences, North Carolina State University, United States

^c Department of Biological and Agricultural Engineering, North Carolina State University, United States

What is THE VALUE OF what is left in the field?

Meets current buyer specifications for quality, but unharvested due to market constraints.

Off-size, blemished, misshapen, or miscolored but not under or over mature. Nutritious and safe.

Damaged, diseased, decayed or over mature. Not suitable for human consumption

We can calculate the value based on a set of assumptions, that you can change.

Pounds marketable and edible

Harvest and field pack

Harvest and shed pack

Packaging

Transport

Price

Shed pack in bins for 50% of WS

(1)

Shed pack in bins for 50% of WS

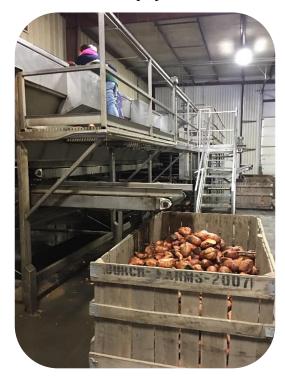
(2)

Field pack in bins for \$0.07/lb

(1)

Shed pack in bins for 50% of WS

(2)


Field pack in bins for \$0.07/lb

(3)

Shed pack, WS in cartons, 50% WS in bins

(1)

Shed pack in bins for 50% of WS

(2)

Field pack in bins for \$0.07/lb

(3)

Shed pack, WS in cartons, 50% WS in bins

(4)

Shed pack, WS in cartons, \$0.07 in bins

Food banks are increasingly covering some of the pick and pack costs

Packed in **cartons** for wholesale market

Packed in **bins** for 50% of wholesale market

Shed pack for wholesale, and 50% of wholesale markets

Field pack in bins for food bank market

Costs & Returns per Acre

Marketable = 2,866 Edible = 3,028 Inedible = 2,198 Total to harvest/sell = 5,894	Harvest	Pack	Packaging	Total Costs	Sales	NET
(1) Shed pack in bins for 50% of WS (50% of \$0.46/lb)						
(2) Field pack in bins for \$0.07/lb						
(3) Shed pack, WS in cartons, 50% WS in bins						
(4) Shed pack, WS in cartons, \$0.07 in bins						

Bell Peppers

Costs & Returns per Acre

Marketable = 2,866 Edible = 3,028 Inedible = 2,198 Total = 2,198	Harvest	Pack	Packaging	Total Costs	Sales	NET
(1) Shed pack in bins for 50% of WS (50% of \$0.46/lb)	\$318	\$368	\$191	\$897	\$1,344	\$447
(2) Field pack in bins for \$0.07/lb	\$318	\$0	\$191	\$509	\$413	(\$96)
(3) Shed pack, WS in cartons, 50% WS in bins	\$318	\$368	\$251	\$938	\$1,997	\$1,059
(4) Shed pack, WS in cartons, \$0.07 in bins	\$318	\$368	\$251	\$938	\$1,519	\$580

Net Returns (\$) per Acre for Additional Harvest, Select Southeastern Vegetable Crops

	Bell Pepper	Cabbage	Cucumber	Yellow Squash	Sweet Corn	Sweet Potato
Scenario 1: Packed in bins at	466	(557)	823	(137)	(178)	88
50% of wholesale price						
Scenario 2: Field packed,	(97)	(338)	38	(277)	(155)	106
sold in bins at \$0.07/lb						
Scenario 3: Packed in cartons for marketable and bins for edible; wholesale price for marketable and 50% of this for edible	1,059	(538)	1,135	(116)	5	515
Scenario 4: Packed in cartons for marketable and bins for edible; wholesale price for marketable and \$0.07/lb for edible	<u>580</u>	(580)	211	(289)	(111)	364

Net Returns (\$) per Acre for Additional Harvest, Select Southeastern Vegetable Crops

	Bell Pepper	Cabbage	Cucumber	Yellow Squash	Sweet Corn	Sweet Potato
Scenario 1: Packed in bins at 50% of wholesale price	466	(557)	823	(137)	(178)	88
Scenario 2: Field packed, sold in bins at \$0.07/lb	(97)	(338)	38	(277)	(155)	106
Scenario 3: Packed in cartons for marketable and bins for edible; wholesale price for marketable and 50% of this for edible	1,059	(538)	1,135	(116)	5	515
Scenario 4: Packed in cartons for marketable and bins for edible; wholesale price for marketable and \$0.07/lb for edible	<u>580</u>	(580)	211	(289)	(111)	364

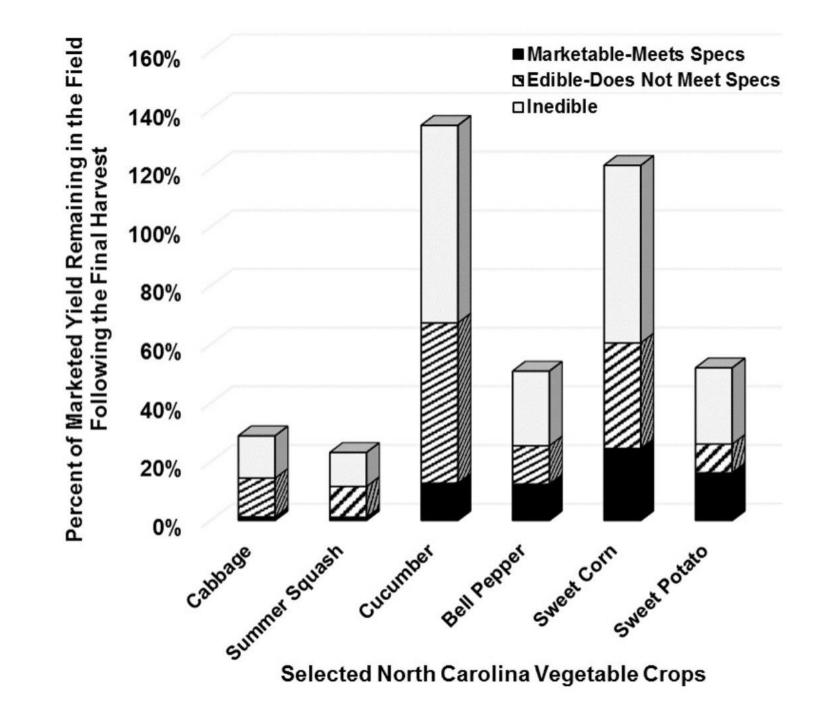
Most profitable for all:

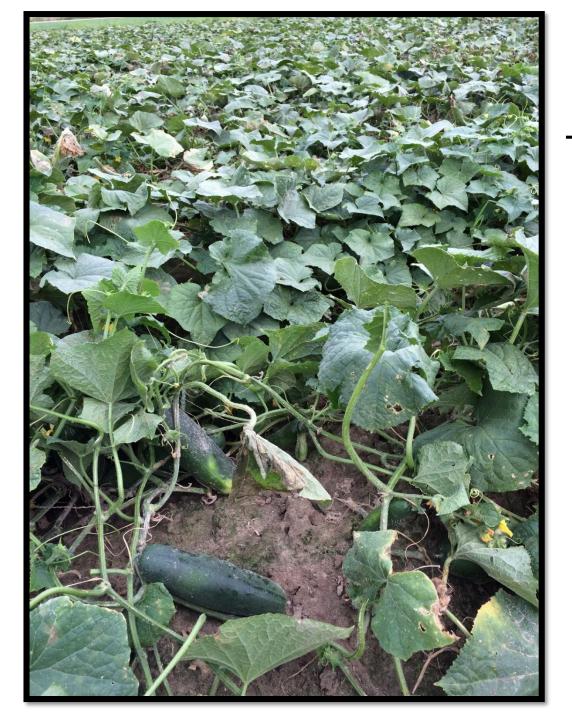
Scenario 3:

Cartons for wholesale and bins for 50% of wholesale

Next most profitable:

> For crops w/high volume marketable: sweet potato and bell pepper


Scenario 4:


Cartons for wholesale and bins for \$0.07/lb

> For crops w/high volume edible: cucumber

Scenario 1:

Packed in bins for 50% of wholesale

Is the harvest over when the price drops? Deciding to stop when there's still a crop

Lisa K. Johnson, Ph.D. & Rebecca D. Dunning, Ph.D.

I_johnson@ncsu.edu Rebecca_dunning@ncsu.edu

Department of Horticultural Science & Center for Environmental Farming Systems

NC STATE UNIVERSITY

www.cefs.ncsu.edu