

Basics of Composting Poultry Litter and Swine Bedding

Sanjay Shah
North Carolina State University
16 November 2010

Composting Facts

- Compost: stable organic material with earthy smell
- Microorganisms convert less stable organic material into compost
- Similar to natural decay but faster due to better control of conditions

Composting Benefits

- Can generate revenues
- Safer & easier to handle vs. raw waste
- Can kill fly eggs and weed seeds
- Good soil amendment

Composting Benefits

- Amount reduced by 25 to 50%
- Greater forage palatability
- Less nitrate concern in forage
- Apply more per acre due to lower N content

Before we get started ...

- Swine waste and broiler litter are compostable materials!
- Piling up waste is not really composting!
- Composting requires management
 & costs money!
- Composting is both science and art!

Factors Affecting Composting Process

- 1. Aeration
- 2. Moisture content
- 3. Carbon/Nitrogen ratio
- 4. Temperature
- 5. Time
- 6. Porosity, structure, texture & particle size
- 7. pH or acidity level

Aeration

- Supplies oxygen
- Removes excessive heat & moisture
- Reduces packing
- Turn, force air, or chimney effect
- Poor aeration causes anaerobic activity (bad) – smelly site
- Too much aeration cools compost (bad)

Windrow turner with watering attachment at CEFS

Moisture content (MC)

$$MC(\%) = \frac{Wt.of\ water}{Total\ wet\ wt.} \times 100$$

- Microbes require moisture
- Need MC for initial mix & periodic watering
- Desirable: 50% (range: 40-65%)
- Less than 40%: reduced microbial activity (spontaneous combustion risk)

Moisture content (cont.)

- Greater than 65%: anaerobic activity (poor aeration)
- Crude method: Squeeze compost ball in hand
 - only 1-2 drops: MC is just right
 - no water: MC too low
 - more water: MC too high

Moisture content (cont.)

- Microwave drying most accurate but need microwave, weighing scale (\$120, Grainger), brown paper bags
- Need representative sample!
- Soil or hay moisture probes give indication faster but less accurate than drying method

Moisture Meter

Reotemp 'moisture meter', \$150 for 4-ft stem

Moisture content (cont.)

Moisture meter from Grainger, \$100

Moisture content calculation

<u>Example:</u> Farmer Joe wants to determine moisture content of compost sample. He takes a 54-gram compost sample plus brown paper bag (weight 4 grams) and places in microwave and heats it for 1 min. He weighs and the new weight is 42 grams. He again heats for another minute and the new weight is 36 grams. During the 3rd heating, he stops before 1 min. when the sample starts to singe. The final weight of bag plus sample is 28 grams.

- Total sample wt. = 54 grams
- Total wet wt. = Total sample wt. Bag wt. = 54 4 = 50 g
- Solid wt. = Final wt. Bag wt. = 28 4 = 24 g
- Wt. of water = Total wet wt. Solid wt. = 50 24 = 26 g
- MC (%) = Wt. of water X 100/ Total wet wt. = 26X100/50 = 52%

Carbon/Nitrogen (C/N) Ratio

- Microbes require different proportions of C & N (also other nutrients)
- Desirable C/N: 30 (range 20-40)
- N loss with low C/N
- Slower composting with high C/N
- Composting stops when usable C used up
- Challenge is with multiple materials varying in C,
 N, and also moisture contents (example later)

Some C/N Ratios

Source	Average	Range
Horse manure (& bedding)	30	22-50
Broiler litter	14	12-15
Swine waste	14	9-19
Saw dust	442	200-750
Grain straw	80	48-150
Grass clippings	17	9-25
Non-legume Hay	32	

Source: NRAES 54

C/N Ratio (contd.)

- When possible, have raw material & compost samples analyzed instead of using literature values
- Need to ask NCDA to do C analysis for animal waste (no extra cost); C/N analysis on compost done automatically
- Mail samples same day to NCDA lab or refrigerate NCDA&CS Agronomic Division 1040 Mail Service Center Raleigh, NC 27699-1040
 - Phone: (919)733-2655
- Waste analysis results available online
 - Go to: http://www.ncagr.com/agronomi/pwshome.htm
 - Click on: Find Your Plant, Waste, or Solution Report
 - Report available in as little as 2 days

C/N ratio calculation problem

Example: Farmer John has 4,000 lb of broiler litter (MC = 35%, C = 26%, N = 20,000 ppm; all from NCDA analysis). He wants to mix it with spoiled hay (MC = 25%). From literature, hay has C/N of 32 and N of 1.3% on dry basis. If he wants to have a C/N ratio of 30 for his compost, how much hay should be mixed in with 4,000 lb of litter?

Note: 1% = 10,000 ppm

Important equation:

$$\frac{Wt.C_{litter} + Wt.C_{hay}}{Wt.N_{litter} + Wt.N_{hay}} = \frac{30}{1}$$

C/N ratio calculation problem (contd.)

Materials	Total wt., lb	MC, %	Dry wt, lb	Wt. of water, lb	N, %	Wt. of N, lb	C/N	Wt. of C, lb
Litter	4,000	26	(100 -26) *4,000 /100 =3,040	4,000 - 3,040 = 960	20,000 /10,000 = 2.0	3,040* 2.0/100 = 61	26/2.0 = 13	3,040*26/ 100 = 790
Hay	X	25	(100 - 25) *X/100 = 0.75X	X-0.75X = 0.25X	1.3	1.3*0.75X /100 = 0.00975X	32	0.00975X *32 = 0.312X
TOTAL	4000 + X		3,040 + 0.75X	960 + 0.25X		61 + 0.00975X		790 + 0.312X

$$\frac{790 + 0.312X}{61 + 0.00975X} = 30$$

$$X = 53,333 \text{ lb}$$

So, we need to add 53,333 lb of hay to 4,000 lb of litter to get C/N of 30

Temperature

- Temperature affects speed of composting
 & destruction of pathogens & weed seeds
- Composting at thermophilic (above 105 F) and mesophilic (50 to 105 F) ranges
- NC regulations: Need 131 F for 15 days (windrow) or 3 days (static pile or in-vessel) for pathogen reduction in Type 3 (manure) facilities

Temperature (cont.)

- 130-145 F kills many weed seeds & pest eggs
- Composting reduced above 150 F
- Aerate at 140 F
- Long-stem
 thermometer needed
 (\$100-150)

Monitoring temperature in a composting bin

Source: National Engineering Handbook

Time

- Depends on many factors, including method, management, source material, and weather
- Composting faster with proper moisture content and C/N and frequent aeration
- Composting delayed by dry material, high C/N, cold weather, and infrequent aeration
- Compost longer for dry & stable product
- Composting period shorter when applied to cropland

Impact of source and method on composting time

Source: NRAES-54

Table 2.2

Typical composting times for selected combinations of methods and materials

		Active compost		
Method	Materials	Range	Typical	Curing time
Passive composting	Leaves	2-3 years	2 years	 0
,	Well-bedded manure	6 months to 2 years	1 year	
Windrow—infrequent turning ^a	Leaves	6 months to 1 year	9 months	4 months
, , , , , , , , , , , , , , , , , , , ,	Manure + amendments	4–8 months	6 months	1–2 months
Windrow—frequent turning b	Manure + amendments	1-4 months	2 months	1–2 months
Passively aerated windrow	Manure + bedding	10-12 weeks	-	1–2 months
	Fish wastes + peat moss	8-10 weeks	_	1–2 months
Aerated static pile	Sludge + wood chips	3–5 weeks	4 weeks	1–2 months
Rectangular agitated bed	Sludge + yard waste or	2-4 weeks	3 weeks	1–2 months
	Manure + sawdust	18		
Rotating drums	Sludge and/or solid wastes	3–8 days	-	2 months ^c
Vertical silos	Sludge and/or solid wastes	1-2 weeks	36 <u>-8</u> 0	2 months ^c

For example, with bucket loader.

For example, with special windrow turner.

Often involves a second composting stage (for example, windrows or aerated piles).

Porosity, structure, texture & particle size

- All influence aeration
- Adjust by selection of raw materials, grinding or mixing
- Amendments (e.g., lime) or bulking agents (e.g., nuggets) can improve properties
- Particles 1/8 to 1/2 in. in size compost faster

pH or acidity

- pH (0-14): Acidic (less than 7); Neutral (7);
 Basic or alkaline (more than 7)
- Composting good near 6.5-8 pH
- pH changes due to chemical changes
- Properly done compost close to neutral
- Take care while adding lime to increase pH

Curing

- Critical but often neglected
- No turning needed but need natural aeration
- Microbial reactions slower
- Begin curing when pile no longer heats up after turning
- End curing when pile temperature near ambient
- Cure for at least one month

Small Composting Operations

- 1. Passive composting
- 2. Turned piles
- 3. Aerated static piles

(Source: Washington State University)

1. Passive composting

- Waste piles 5-7 ft wide, 3-4 ft high
- Build piles in bins, 8 ft × 8 ft
 & 4 ft height
- Extra bin for curing
- Turn piles when adding material
- One bin ready in 2-4 months

Bin composting of poultry mortalities. Note that gap between lumber allows aeration

2. Turned piles

- Great if tractor available
- Concrete or graveled pad desirable
- Turning improves composting
- 30 ft × 30 ft pad adequate for 3 piles or windrows

3. Aerated static piles

- No need to turn
- Perforated plastic pipes
- Air may be pulled or pushed
- Higher initial investment but saves labor

Aerated static pile

Source: NRAES-54

Conclusions

- Composting a feasible waste management strategy
- Can help generate farm revenues
- Provides environmental benefits
- Requires management

Contact information and references

Sanjay Shah

NC State Univ.

Biological & Agricultural Engineering Dept.

Campus Box 7625, Raleigh, NC 27695

Phone: (919)515-6753, Email: sanjay_shah@ncsu.edu

Good books on compost:

- 1. On-farm composting handbook (NRAES 54) \$25
- 2. Field guide to on-farm composting (NRAES 114) \$14

Natural Resource, Agriculture, and Engineering Service

Cooperative Extension

Ithaca, NY 14852-4557

Phone: (607)255-7654, Email: nraes@cornell.edu

Website: www.nraes.org